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/klBSTRACT

This paper addresses two questions: 1) which future missions need

Controls-Structt res Interaction (CSI) technology for implementing

large spacecraft in-orbit? 2) what specific benefits are to be derived if

the technology is available? The answers to these questions have been

used to help formulate and direct the CSI technology development

program being Jointly pursued at the Langley Research Center (LaRC),

the Jet Propulsion Laboratory (jPL), and the Marshall Space Flight

Center (MSFC). Many future NASA missions have common CSI

technology needs which can best be developed in a broad-based, but

focused, technology program to provide the greatest benefit to the

largest number of users.

Three CSI benefit studies have been completed to date as part of an

ongoing assesswent process and have addressed missions requiring

large antennas, missions requiring large optical systems, and missions

requiring the use of closed-loop controlled, flexible, remote

manipulator arms for in-space assembly. The benefit studies defined in

this report are f_)r missions with large antennas and flexible remote

manipulator sysLems (RMS).

The CSI benefits study results for the Mission-To-PIanet-Earlh show

that significantl} larger antennas (80 meters) can be used if CSI

technology is aw/ilable as compared to much smaIIer (20 meters)

antennas if it is not. Likewise, the science benefits study for the

precipitation mapper on the Mission-To-Planet-Earth geostaIionary

platform shows it Is possible to meet science requirements of maximum

measurable rain rate and resolution cell size using CSI technology to

suppress antenna beam Jitter whereas, without that control ability, the

science requirements simply can not be met.

Results from the RMS benefit study, assuming use of CSI technology,

show a decrease in the amount of RMS settling time by a faclor of five,

which would significantly speed up the Space Station Freedom

assembly.
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1.0 INTRODUCTION

Conventionalspacecraft design is accomplished by estimating size and

mass of the spacecraft components and designing a structur(

sufficiently stiff to maintain the structure shape during operations;

the control system is then designed to orient, guide and/or move the

spacecraft to obtain the required performance. This traditional

approach attempts to separate the lowest structural frequency and the

control bandwidths, as shown In figure 1, so that the structure and

control system do not interact. It is not uncommon, however, for

solar panels or other long spacecraft appendages to have one or two
modes in the control bandwidth so that notch filters have to be used

to avoid their excitation by the control system. Performance is usually

lost in the process. Looking to the future, these design issue_ are

expected to become even more challenging.

Based on several august committee studies (references 1-6), future

spacecraft are expected to get larger and more flexible with structural

frequencies decreasing, in many cases, below 1 Hz, with many closely

packed modes. Also, performance demands on the control system are

expected to become more stringent and drive the control bandwidth

to higher values Into the same spectral region as the structural modes
(shown at the bottom of figure 1). For a control system to operate in

this environment without destructive excitation of the spacecraft or

loss of performance requires a technology beyond that currently
available.

Another challenging feature typical of large future spacecraft is the

general increase of on-board disturbance levels and their bandwidths.

This trend toward multi-sensor/multi-user spacecraft greatly improves

coregistration of Earl11 located measurements from the many sensors

and the cost per lnsFument is less when a common spacecnfft (S/C)

bus Is used. Unfortu,lately, the additional disturbances (scanning
mirrors, etc.) can exc;te unwanted structural resonances even if the

control system does not.

In order to Improve t,;chnology to meet the design demands for large

spacecraft where ther_ Is spectral overlap of control/disturbance

bandwidths and high density structural modes, a multi-center program

was initiated to develop the CSI technology so it could be applied to
spacecraft of the future (reference 7).

Specifically, the overall objective of the CSI program is to develop and

validate the technology needed to design, verify, and operate spacecraft
so that the structure and control systems interact beneficially to meet

the requirements of 21st-century NASA missions. Program goals are
listed below:



• Dynamic response amplitude reductions of 50 percent.

* Several orders of magnitude improvement in pointing

precision.

• On-orbit performance prediction within I0 percent.

• Unified controls-structures model, analysis, and design.

• Flight system performance verification by analysis/ground test.

The CSI program long term goals are unusually specific for a technology

development program. This has the advantage of helping target several

specific future programs that could benefit from the new CSI

technology, and it allows one to be definitive about what those benefits

might be. Focusing the technology development In the direction of

selected future missions also involves greater interaction between the

technology developer and the technology user so that each is more
sensitive to the needs of the other.

The CSI technology program objectives were developed using

Information from a number of available visionary documents and

technology workshops. These documents define long range NASA

mission options that can be accomplished if the appropriate technology

is developed. Many of the future programs have common technology
needs which can best be addressed in a broad-based CSI technology

program, providing the greatest benefit to the largest number of users.

The major documents and workshop information sources used in this

study are listed below and in references 1 through 6.

WORKSFK_

* Earth Scierme Geostationary Platform Technology Workshop.

Langley Research Center CP 3040, September 21-22, 1988.

* In-Space Technology Experiments Workshop. December 6:9, 1988.

* Second Beamed Space Power Workshop. Langley Research Center,

February 28-March 2, 1989.

* Global Change Technology Initiative (GCTI)

* # 1--JPL March 1989

* # 2--LaRC April 1989

* # 3--GSFC May 1989

* Workshop on Technologies for Space Optical Interferometry,

April 1989 & 1990.

* Workshop on the Next Generation Space Telescope,

September 1989.
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2.0 FUTURE MISSIONS NEEDING CSI TECHNOLOGY

Future missions with a potential for benefiting from CSI technology have

been divided into four main categories listed in figure 2. Lead center

responsibility for each category is shown in parentheses. Specific

features of each mission concept can be found in the reference

literature. All of them have large flexible spacecraft structures and high

bandwidth control systems. Some of them have been selected as focus

missions. The selection was based on maturity in mission concept and
need. The more CSI features in common with other future missions

multiplies the benefit of the technology. The selected focus missions

also are perceived to have high priority in terms of national need and

challenging CSI features relative to current technology.

Many of the spacecraft geometric features taken from these mission

categories have been included in the analytical models and ground test

models selected by LaRC, JPL, and MSFC. Specific model features

selected for the CSI Program are discussed in references 8-I I.

The focus of the LaRC part of the multi-center CSI program emphasizes

technology needs for large space antennas on flexible platforms carrying

many separately controlled payloads and appendages. Examples of

these type missions are the Mission-to-Planet-Earth geostationary

spacecraft and the growth configurations of Evolutionary Space Station
Freed ore.

The specific CSI features of interest for Mission-To-Planet-Earth

geostationary spacecraft are the large platform used to mount multiple
sensors (many of which cause significant disturbances due to scanning

mirrors, etc.), the flexible articulating antennas, and the sensor

pointing requirements that exceed current state of the art.

The JPL task focuses on the development of CSI design technology for

micro-precision controlled structures. This technology is needed for
large optical systems such as large (20 to 100m) optical interferometers

and for some high surface accuracy (micron level) microwave antennas

(reference 1 I).

The astrophysics systems category being addressed by MSFC includes
missions such as the X-Ray pinhole occulter flight experiment now

under study. That flight experiment would provide science as well as

serve as z CSI technology experiment on Space Shuttle then later on

Space Station Freedom. MSFC is developing the ground test facilities
and defin tion studies for technology flight experiments in this category

of mlssioils (reference 12).

Studies are currently underway to address CSI issues associated with

specific features of Space Station Freedom listed, on figure 2, as will be

described later in the report.

5



3.0 LARGE SPACE ANTENNA MISSION NEEDS

Many future missions need antennas larger than the 9-meter antenna
flown on ATS-6 in 1973. CSI technology will be required to maintain

their precise shape and beam pointing stability. This is because larger
antennas will be more flexible and more subject to distortion, and

because they must work at shorter wavelengths requiring much higher

quality control on antenna dimensions than ever before.

The six specific programs listed in figure 3 must use large SlZ.ace
antennas (LSA) In order to meet the mission requirements. Antenna

diameters needed by each mission (shown in parentheses) are taken

from white papers and workshops. In some cases, the large antennas
must be scanned; others must be attached to a large platform with many

other sensors having disturbance generating scanning mirrors, etc.
This. of course, makes the CSI design even more challenging and the

potential of CSI technology benefits still greater.

The first focus mission selected by LaRC for a detailed look at

technology needs and related CSI benefits (assuming successful

development of CSI technology) is the Mission-To-Planet-Earth

Geostationary Platform (Geoplat).

4.0 ELEMENTS OF MISSION-TO-PLANET-EARTH

The centerpiece of the U.S. contribution to the international Mission-

To-Planet-Earth Program ls the Earth Observing System (EOS) polar

orbiter with later plans to add five geostationary spacecraft. New-start
for the low Earth orbiter EOS-A was in F.Y. 1991 and does not require

new technology to meet its measurement requirements. The

geostationary orbiting spacecraft, however, require very large scanning
microwave radiometer antennas for making precipitation maps of l he

Earth every 30 minutes, and have very stringent infrared/visible band

sensor pointing requirements. To satisfy these needs technology

development will be required. New-start of the gcostationary spacecraft

part of this program is not expected until F.Y. 1995 which allows
enough time to develop the needed technology and establish its

credibility with a proof-of-concept flight experiment.

Several studies have been completed to characterize different design

concepts for the Geoplat. For example, a Geoplat Phase-A study by
MSFC (reference 13) Includes a small antenna (4.4 meters) for

precipitation mapping because current technology will not allow

anything larger that will fit within the vehicle launch envelope. The
4.4-meter antenna size, although big enough for some science

requirements, is more than a factor of 10 too small to meet /he

precipitation requirements as will be shown later in this report.



Larger antennas for Geoplat (20 meters) have been considered in a
Goddard Space Flight Center study (reference 14) which assumes
assembly in orbit, but the serious question of antenna beam jitter for the
larger antennas remains. Studies have been conducted at
specifically regarding the three-dimensional dynamics of a large
spacecraft, such as Geoplat, that show prohibitive pointing jitter for
antennas larger than 20 meters unless CSI technology is employed
(references 15 & 16). Details of this study are discussed next.

5.0 MISSION BENEFITS FROM CSI TECHNOLOGY

The first focus mission benefit study was for the Mission-to-Planet-
Earth Geoplatform. The question to be answered was: what specific

advantages are there In applying CSI technology in the design of that

spacecraft? This question can be answered by defining differences in

the mission performance capability using both the traditional and CSI

approach. The antenna pointing jitter performance improvement was

chosen as the parameter for study. Another CSI benefit quantified in

this study is the science benefit of being able to use larger antennas
with the microwave and millimeter wave precipitation mapping sensors.

5.1 LARGE SPACE ANTENNA PERFORMANCE IMPROVEMENT

In order to provide the needed precipitation maps of the Earth every

30 minutes for Mission-To-Planet-Earth, precision pointing and beam

scanning are necessary for the large microwave radiometer antennas

shown on each end of the geostationary platform (figure 4). Since this

beam scanning will most likely be accomplished mechanically by

moving some pal-ts of the antenna, this and other spacecraft

disturbances will cause feed-mast flexure and antenna distortion
resulting in beam pointing jitter. Jitter up to 10 percent of the

resolution cell size is allowed without seriously degrading the quality

of the precipitation map developed by the beam raster scan. As the

figure shows for the 20 GHz microwave antenna, beam jitter

requirement becomes more stringent as LSA diameter increases since

beam width varies inversely with antenna diameter. The 15 meter

antenna Jitter results were scaled to other antenna diameters using

scaling laws presented in reference 15.

The two performance curves indicate expected pointing capability,

with and without the use of Control-Structures Interaction technology,
for the LaRC/F0rd Aerospace m0dei {reference 16). Without CSI

technology, the beam jitter Is acceptable only for antennas below 20

meters in diameter. In contrast to that limit, antennas up to 80

meters in diameter could be used while still meeting a 10-percent
pointing jitter requirement if CSI technology is employed.



The technology benefit, for this example case study, is that
significantly larger antennas can be used with improved performance
for future missions If CSI technology can be developed to provide the
two orders of magnitude active control and increased passive damping
from 0.5 percent to 5 percent as assumed here. This ls a design goal
of the CSI program. Currently demonstrated active control for

ground-based experiments provides only about one order of magnitude

in pointing improvement.

Once developed, the CSI technology will enable a number of important
missions, such as the Mission-To-Planet-Earth, and assure improved

performance capability for similar large space antenna missions such

as the Very Long Baseline Interferometer (VLBI) for radio astronomy,
advanced communication systems, and aircraft surveillance systems.

5.2 SCIENCE BENEFITS FROM CSI TECHNOLOGY

Although it is clear that CSI technology allows larger microwave and
millimeter wave antennas for remote sensing, the key question Is: how

does that improve science for the Mission-To-Planet-Earth Program?

The answer is, in two ways. First, the use of larger antennas allows

superior spatial resolution to better match the correlation length of
rain cells (typically 10 km or less). This avoids partially filled
resolution cells which would result in measurement errors.

Resolution cell size is proportional to the ratio of spacecraft altitude to

the product of electromagnetic frequency (fl and antenna diameter
(D), as shown in figure 5. If it were not for the fact that choice of

electromagnetic frequency also determines the maximum measurable
rain rate, the antenna diameter could be kept small and still meet the

resolution cell size requirements simply by using ultra high

frequencies (millimeter wavelength band). The microwave radiometer

sensitivity to different rain rates is shown in figure 6.

Second, the use of larger antennas allows, with CSI technolot_y, rain

rate measurements over the full dynamic range by using both

millimeter and microwave frequencies rather than being restricted to

light rain measurements (<10 ram/hr.) with small millimetel wave

antennas. The approximate l/f2 radiometer brightness teml)erature

'dependence, shown as an example in figure 6, indicates that a 20 GHz
radiometer saturates at rain rates above 10 ram/hr. This satl,ration

limit was demonstrated by the 1973 Electrically Scanning Microwave
Radiometer (ESMR) in low Earth-orbit (reference 17). In order to

measure the higher rain rates, a lower microwave frequency must be

used. Six GHz is shown as an example. Therefore, for a required

resolution cell size of 20 km and a geostationary orbit altitude of

35,000 km, the antenna diameter must be about 80 meters for 6 GHz.

Only through the use of the lower frequency microwaves can the

moderate and heavy rain rates be measured, thus, providing a

comprehensive data set.



The percentages shown on the lower abscissa scale of figure 6 are
based on rain statistics derived from the tropics (reference 18) and do

not necessarily apply to global statistics which are currently unknown.

Translating the resolution cell size and microwave frequency

requirements into specific precipitation requirements is shown on

figure 7. This science benefits chart shows specifically how CSI
technology improves resolution and rain rate measurements as an

example case study. Without beam jitter control on the antenna, the

precipitation measurements would be restricted to the region on the
left of the 20-meter antenna diameter curve labeled '%Vithout CSI

Control". This severely limits the maximum measurable rain rate and
the resolution cell size. In contrast to that limit, the use of CSI

control with a beam jitter controlled 80-meter antenna provides data

that are almost completely within the science measurement

requirements zone.

For comparison, the capability of several previous and current low
Earth orbit satellite radiometers are shown which have been _sed to

provide rain maps of the Earth. It is clear that large antenna::; will
have to be used for GeoPlat and that CSI technology will be needed to

meet the science requirements. There is currently underway a

considerable effort to develop millimeter wave radiometry to infer the

high rain rates. If successful, this measurement method would, when
combined with CSI technology, allow resolution cell sizes to ;_pproach
ideal science values (1 km) rather than be limited to the 20 Im

"acceptable" values possible at 6 GHz,

6.0 BENEFITS OF CSI TECHNOLOGY TO SPACE STATION
ASSEMBLY BY FLEXIBLE ROBOTIC MANIPULATOR SY_ TEMS

Based on experiences from many previous Shuttle flights, thc

oscillations of the RMS/payload system have been found to add time to

payload deployment, retrieval, and maneuvering. For example, the crew
must wait for the oscillations to damp sufficiently to determine the

results of the last input. This insures that the next input is not phased
so as to enhance the oscillation. A robotic system with a CSI controller

might significantly reduce settling time during Freedom assembly and
later for Moon and Mars vehicles assembly.

To quantify the CSI settle-time reduction, a benefits study was
conducted with McDonnell Douglas for a CSI controller applied to the

flexible Space Shuttle RMS for the assembly of Space Station Freedom
(reference 19). The CSI case was compared with assembly times using

the present Space Shuttle RMS. The comparison was for baseline

assembly sequence #20/13. The number designation indicates 20

flights are required to accomplish complete assembly (for the first 13

flights Freedom is unmanned). This was the most detailed assembly



sequence defined at the time the study began. There were 101 items in
the 20 flights and RMS settling time was estimated as a function of the

payloads for 8 different weight classes. In the study it was found that 65

percent of the RMS settling times--without CSI technology--are

predominantly related to payloads in 2 weight classes (3000 lbs _+ 2000
lbs and 7500 lbs + 2500 lbs).

A typical RMS time response is shown at the top right of figure 8. For

this study, settling time was defined as the amount of time required for
the oscillations at the tip of the RMS to reduce to 2 inches (peak-to-

peak). The RMS settling time without the CSI controller was computed

for each of the 20 missions relative to the total RMS activity time (see

bottom left of figure 8). Following that, the potential settling time
reductions for a CSI controller with different assumed damping factor

improvements was calculated, as is shown on the right hand bottom

inset of figure 8. Significant time savings can be realized with even

modest CSI improvement in arm damping.

7.0 CURRENT BENEFIT STUDIES UNDERWAY

Itaving completed the benefit studies presented in this report, the ne_t

focus mission has been selected and benefit study initiated to determine

if CSI technology could improve user accommodations on the

Evolutionary Space Station Freedom. Early studies have already shown
that some baseline activities on Freedom, such as crew treadmill and

RMS activities, are most likely to require schedule work-arounds to

avoid conflicts with user requirements for microgravity and precision

pointing. In the benefits study, user requirements and related

disturbances will be defined and used as input to a Finite Element

Model of Freedom (Extended Operating Capability -XOC Configuration)

developed at LaRC (reference 20). The study will determine the exten:

of environment improvement possible using CSI technology.

It is clear that the CSI technologist must have a good undersianding of

what specific types of environmental improvements the rese,_rcher

needs In order to provide design countermeasures. Just as In the

Geoplat case where the physics of the precipitation measurement

played an Important part In choice of electromagnetic frequency (and

thus antenna diameter), it Is important that the physics of p_eferred

microgravity environment be understood in order to design
countermeasures to improve it. Figure 9 shows an example (_f the

degree of concern the mlcrogravity researchers have with different

types of environmental disturbances and several types of material

processing (references 20 & 21).
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8.0 SUMMARY

Several future mission categories have been fdentified that need

Controls-Structures Interaction (CSI) technology for implementing

large spacecraft in-orbit. Three specific focus missions selected in this

study have been used to help formulate and direct the CSI technology

development program being pursued at LaRC, JPL, and MSFC.

Three CSI benefit studies have been completed to date as paJ_ of an

ongoing assessment process and have addressed missions requiring

large antennas, missions requiring large optical systems, and settle-
time reduction using flexible remote manipulator arms. The optics

missions benefits are covered in a separate publication.

The benefits study results for the Mission-To-Planet-Earth show that

science returns can be significantly enhanced with larger antennas (80

meters) if CSI technology is available as compared to a much smaller

(20 meters) antenna limit without CSI technology.

Results from the benefit study assuming use of CSI technology to speed

up Freedom assembly shows a decrease of five in the amount of settling
time for the Shuttle RMS if the damping factor is improved by a factor

of three. Damping factor improvements in this range are considered

achievable with current CSI technology.

11
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LARGE SPACE ANTENNAS (LaRC)

LARGE OPTICAL SYSTEMS (JPL)

ASTROPHYSICS SYSTEMS (MSFC)

SPACE STATION SYSTEMS

* Flexible RMS

* Attached Payloads

* Microgravity Facilities

Figure 2. - Mission Categories.
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• MISSION-TO-PLANET-EARTH

* Leo

* Geo (4.4 m --->200 m)

• DEFENSE METEOROLOGICAL SATELLITE PROGRAM

(DMSP) BLOCK-6 (6 m)

• FAA AIRCRAFT SURVEILLANCE / COMM (20 m)

• RADIO ASTRONOMY-----VLBI (20 m)

• COMMUNICATION SATELLITES (15 --> 55 m)

• IN-SPACE POWER TRANSFER (1000 m)

Figure 3. - Large Space Antenna Related Missions.
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SCIENCE PARAMETERS

Resolution Cell Size

Rain Fall Rate

ANTENNA PARAMETERS

o_(Altitude) / (f x D)

Max. Meas. Rain Rate o_1 /f2

Figure 5. - Conversion of I,arge Space Antenna Benefits Into
Science Benefits for Geoplat.
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ENVIRONMENTAL EFFECTS ON MATERIAL PROCESSING

Type Quasi-

Envir. _,_xp. Contained Containerless Containerless FluidSolidification Solidification Experiments Experiments

Example

Low-Level /,/ ////'_E / / h A/ /
Sleady Possibly / Possibly / Unimportant Possibly//

Accelerations /SeriouJ / / _riouy / /#SeriousV//

L ..'///////
Crew Soar Relatively rossibly # Possibly ,_ Relatively

Unimportant / Serious// /Serio_ / Unimportant

,/////_ / / /, ///
Unimportant/SeriouJ / /Sjeriouy / /Serious//

Rotation- / Should be,,,/ /S /hould bV Unimportant
Induced Flows ,/Avoided/ ,/ /Avoided / ,/ /Avoided/ /

Figure 9. - Environmental Effects on Material Processing.
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